- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Wenyang (2)
-
Fernández-Seara, Maria A. (1)
-
Gach, H. Michael (1)
-
Guo, Feng (1)
-
Hazle, John D. (1)
-
Jiang, Lei (1)
-
Jung, Sungkyu (1)
-
Liu, Weichen (1)
-
Lou, Qian (1)
-
Luo, Jingqin (1)
-
Ma, Jingfei (1)
-
Motai, Yuichi (1)
-
Nair, Tejas (1)
-
Pohmann, Rolf (1)
-
Ruan, Dan (1)
-
Song, Hao (1)
-
Stenger, V. Andrew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A scalp-recording electroencephalography (EEG)-based brain-computer interface (BCI) system can greatly improve the quality of life for people who suffer from motor disabilities. Deep neural networks consisting of multiple convolutional, LSTM and fully-connected layers are created to decode EEG signals to maximize the human intention recognition accuracy. However, prior FPGA, ASIC, ReRAM and photonic accelerators cannot maintain sufficient battery lifetime when processing realtime intention recognition. In this paper, we propose an ultra-low-power photonic accelerator, MindReading, for human intention recognition by only low bit-width addition and shift operations. Compared to prior neural network accelerators, to maintain the real-time processing throughput, MindReading reduces the power consumption by 62.7% and improves the throughput per Watt by 168%.more » « less
-
Song, Hao; Ruan, Dan; Liu, Wenyang; Stenger, V. Andrew; Pohmann, Rolf; Fernández-Seara, Maria A.; Nair, Tejas; Jung, Sungkyu; Luo, Jingqin; Motai, Yuichi; et al (, Medical Physics)
An official website of the United States government
